
The Linux Real Time patch

•Klaas van Gend
•FAE Europe, MontaVista Software

•T-DOSE conference,
•Eindhoven, December 3, 2006

 MontaVista CONFIDENTIAL, ©2006 Platform to Innovate

Shameless plug

NLUUG – Open Systems, Open Standards.

Spring conference on virtualization : May 10, 2007.

 MontaVista CONFIDENTIAL, ©2006 Platform to Innovate

Virtualization and Real Time?

CPU 2CPU 1

LinuxRTOS

CPU
RTLinux / Adeos / Jaluna

Linux
Apps RT

stuff

CPU

Linux kernel + RT

Linux
apps

RT
stuff

CPU
Linux kernel + RT + KVM

Linux
apps

RTstuff
+

RTOS

AppsRT Stuff

Real Time patch BOF
on OLS

•Friday, July 21, 2006
•13:00 – 13:45

•Room D

•Steven Rostedt
•Klaas van Gend

5Platform to Innovate

Rights to Copy

Attribution – ShareAlike 2.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions:

 Attribution. You must give the original author credit.

 Share Alike. If you alter, transform, or build upon this work,
 you may distribute the resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/2.0/legalcode

http://creativecommons.org/licenses/by-sa/2.0/legalcode

6Platform to Innovate

The RT patch

•Ingo Molnar's Real-time Patch

 Maintainer: Ingo Molnar

 Several developers: Thomas Gleixner and others

 Download at: http://people.redhat.com/mingo/realtime-preempt/

 MontaVista CONFIDENTIAL, ©2006 Platform to Innovate

What is UNIX?

•UNIX is by design fair:

•Share resources:
 Memory
 Disk space
 cpu

8Platform to Innovate

The Car example

9Platform to Innovate

What is RT?

•RT is about determinism
NOT performance!

•RT gives you a guaranteed maximum
time of what can happen

•Sometimes this might actually slow down
the system slightly

10Platform to Innovate

Repeat after me:

RT is NOT about performance

11Platform to Innovate

What's in the RT patch?

•Interrupts as threads (both Hard and Soft)

•Sleeping spinlocks !

•Priority Inheritance of the Sleeping Spinlocks

•high-res timers

12Platform to Innovate

Hard interrupts as Threads

•The “top half” is now a kernel thread
 Runs in a loop
 Calls all the ISR for the IRQ

•Processes can run at a higher priority
than an ISR

•Ctrl-C ???
 Klaas will talk about that later

?

13Platform to Innovate

 PID TID CLS RTPRIO NI PRI PSR %CPU STAT WCHAN COMMAND
 1 1 TS - 0 23 0 0.6 S select init
 2 2 FF 99 - 139 0 0.0 S migration_thre migration/0
 3 3 FF 1 - 41 0 0.0 S ksoftirqd softirq-high/0
 4 4 FF 1 - 41 0 0.0 S ksoftirqd softirq-timer/0
 5 5 FF 1 - 41 0 0.0 S ksoftirqd softirq-net-tx/0
 6 6 FF 1 - 41 0 0.0 S ksoftirqd softirq-net-rx/0
 7 7 FF 1 - 41 0 0.0 S ksoftirqd softirq-block/0
 8 8 FF 1 - 41 0 0.0 S ksoftirqd softirq-tasklet
 9 9 FF 1 - 41 0 0.0 S ksoftirqd softirq-hrtreal
 10 10 FF 1 - 41 0 0.0 S ksoftirqd softirq-hrtmono
 11 11 FF 99 - 139 0 0.0 S watchdog watchdog/0
 12 12 TS - -10 34 0 0.0 S< desched_thread desched/0
 24 24 FF 1 - 41 0 0.0 S< worker_thread events/0
 26 26 TS - -5 29 0 0.0 S< worker_thread khelper
 27 27 TS - -5 28 1 0.0 S< worker_thread kthread
 30 30 TS - -5 29 0 0.0 S< worker_thread kblockd/0
 32 32 TS - -5 29 1 0.0 S< worker_thread kacpid
 33 33 FF 49 - 89 0 0.0 S< irqd IRQ 9
 150 150 TS - 0 23 0 0.0 S pdflush pdflush
 151 151 TS - 0 24 0 0.0 S pdflush pdflush
 153 153 TS - -5 28 0 0.0 S< worker_thread aio/0
 152 152 TS - 0 22 1 0.0 S kswapd kswapd0
 741 741 TS - -5 29 0 0.0 S< serio_thread kseriod
 746 746 FF 48 - 88 1 0.0 S< irqd IRQ 12
 774 774 FF 47 - 87 0 0.1 S< irqd IRQ 14
 789 789 FF 45 - 85 0 0.0 S< irqd IRQ 1
 793 793 TS - 0 24 1 0.0 S kjournald kjournald
 894 894 TS - -4 26 0 2.6 S<s select udevd

14Platform to Innovate

Soft IRQs

•Are separated

•Every softIRQ has its own thread

•hrtimer softirq has dynamic priority

15Platform to Innovate

CONFIG_PREEMPT

•spinlock disables preemption

•global blocking

•IRQs in interrupt context

Sleeping spinlocks

CONFIG_PREEMPT_RT

•spinlocks are mutexes

•localized critical sections

•must have IRQs as threads

16Platform to Innovate

Priority Inheritance

•Fact:
priority inversion

happens

•Even if Linus says it doesn't.

•Unbounded priority
inversion is preventable

A

B

C

attempts
to lock Q,
held by C

prio
high

prio
low

prio
med

C never
gets to run...

Q

MontaVista customers and RT
why all customers make the same mistakes

Klaas van Gend

FAE Europe

July 20, 2006

BOF Part II:

18Platform to Innovate

Why this presentation?

•Klaas van Gend
 Works for MontaVista Linux Software
 Has been shipping RT on 2.6.10 since August 2005
 Several customers use RT

•They all made the same (type of) mistakes

•They all had the same confusions
 Even if Klaas told them beforehand

•But we can learn from their confusion!

19Platform to Innovate

“I need real time because my system needs to be fast”

•“I want to have the best performance Linux can do”

NO!

REAL TIME DOES NOT MEAN HIGHEST
PERFORMANCE

First mistake:
do you need RT?

20Platform to Innovate

Real-Time Response vs. Throughput

Efficiency and Responsiveness are Inversely Related

 Overhead for Real-Time Preemption
 Mutex Operations more complex than Spinlock Operations
 Priority Inheritance on Mutex increases Task Switching
 Priority Inheritance increases Worst-Case Execution Time

 Design flexibility allows much better worst case scenarios
 Real-time tasks are designed to use kernel resources in managed ways then delays

can be eliminated or reduced

Throughput High responsiveness

21Platform to Innovate

Second mistake:
prio 99

testrt.c:
#include <pthread.h>
int main(void)
{

set_my_priority_to_highest();
while (true)
{;}

return 0;

}

or:
while (someVolatile!=-1)
{
 sched_yield();
}

22Platform to Innovate

Third mistake:
don’t tell you use RT

•This really happened!
•“NFS client stops working after 4-6 minutes”

•Customer didn’t provide kernel config (even after asking 4x)
•Support engineer started checking all kinds of configuration on
both NFS client and server side

•(The real solution was improper locking in their
UP-only network driver)

23Platform to Innovate

Fourth mistake:
“I only have a single CPU!”

•In RT any process can be preempted at any time

•Thus very similar to multi-processor:
 same code can run simultaneously at different cores

•All requirements for SMP-safeness also apply to RT

•RT and SMP share the same advanced locking

•Using deadlock detection in RT
 already led to 100s of SMP bug fixes in the kernel

24Platform to Innovate

•What happens if:
 Your system is low on memory AND your

RT task’s code pages are freed or were
swapped to disk?

•Solution:
 mlockall(MCL_CURRENT | MCL_FUTURE)

•Only do this on small processes!
 ALL memory pages in the process space will be locked into

memory
 Imagine what this does to a big multithreaded app

Fifth mistake:
RT process swapped to disk

25Platform to Innovate

Sixth mistake:
Expect someone else to test it

•Linux RT comes with NO WARRANTY

Hardware configuration impacts RT

•YOU have to verify it works well

•Some random tips:
 test with caches off
 test with extra system load
 “quiet” on command line – no printk()
 run at least once with IRQ latency tracing and fix it

26Platform to Innovate

Responses from the participants in the BOF

• 3rd Party binary drivers are not compatible with the locking
mechanisms of the RT kernels, they need a recompile!!!

• Using soft floating point (and/or floating point kernel emulation) is
not compatible with RT at the moment

• The current mechanism to distinguish between raw spinlocks and
sleeping spinlocks works at compile time. It however confuses gdb
and ctags

• Due to lockdep, future wrong usage of spinlocks or
irq_disable() will be trapped before any patch enters the
kernel tree

• Someone made the statement that up to today, the RT tree has
caused almost 2000 patches (SMP bug fixes, but also the feature
patches) to be accepted in the mainline kernel. Thus far more than
on slide 21.

(This slide was not in the original presentation)

 MontaVista CONFIDENTIAL, ©2006 Platform to Innovate

 MontaVista CONFIDENTIAL, ©2006 Platform to Innovate

Standard Linux Interrupt Handlers

High prio task

Scheduler:
No tasklets left, schedule
prioritized processes

Interrupt occurs

hardware
interrupt

Int. handler schedules
“Tasklet” (bottom halve)

Tasklet 1

Original kernel process continues

“unbound interrupt latency”

Running process

Kernel starts interrupt handler

Scheduler: ALL tasklets first

…2 …3

 MontaVista CONFIDENTIAL, ©2006 Platform to Innovate

High priority process

Running process

Interrupt thread (less prio)

Kernel (scheduler)

RT-patch Thread Context Interrupt Handlers

IRQ handler: “wake_process()”

Tasklet

hardware
interrupt

End of handler
=

“Sleep thread”

Schedule
next process

Highest prio
process runs
to completion

 MontaVista CONFIDENTIAL, ©2006 Platform to Innovate

Back

