montavista

Real Time Linux patches:
history and usage

Presentation first given at: FOSDEM 2006

Embedded Development Room

See www.fosdem.org

Klaas van Gend

Field Application Engineer for Europe

http://www.fosdem.org/

Why Linux in Real-Time Systems? montavista

Not because of the Kernel’'s Real-Time Performance!

¢ UNIX-legacy Operating Systems were designed based
operating principles focused on throughput and progress

¢ Fairness, progress and resource-sharing conflict with the
requirements of time-critical applications

¢ UNIX systems (and Linux) are historically not Real-Time OS

In 2005, Linux RT Technology advanced dramatically

¢ Real-Time Linux can now be used a RTOS Kernel

©2006 MontaVista Software Platform to Innovate

Real-Time and Linux Kernel Evolution montavista

" Gradual Kernel Optimizations over Time

¢ SMP Critical sections (Linux 2.x)

¢ Low-Latency Patches (Linux 2.2: Ingo Molnar/ Audio Community)
Preemption Points / Kernel Tuning (Linux 2.2 / 2.4)
Preemptible Kernel Patches (Linux 2.4) (Robert Love)
Fixed-time “O(1)” Scheduler (MontaVista -> Ingo Molnar)
Voluntary Preemption (Ingo Molnar)
Real-Time Preemption (MontaVista - Ingo Molnar)

® & o o o

©2006 MontaVista Software Platform to Innovate

Real-Time and Linux Kernel Evolution montavista

" Gradual SMP-Oriented Linux Kernel Optimizations
Early Kernel 1.x No Kernel preemption

SMP Kerna 2.x No Kernd preemption, “BKL” SMP Lock

SMPKernel 22-24 No preemption, Spin-locked Critical Sections

“Preempt” Kernel 2.4 | Kernel Preemption outside Critical Sections
Spin-locked Critical Sections

Current Kernel 2.6 Kernel Preemption outside Critical Sections,
Preemptible “BKL”, O(1) Scheduler

g RT-Preempt” Kernel Kernel Critical sections Preemptible
IRQ Subsystem Prioritized and Preemptible

Mutex Locks with Priority Inheritance

©2006 MontaVista Software Platform to Innovate 4

Kernel Evolution: Preemptible Code montavista

Kernel 2.0
BKL
Kernels :
2.2-2.4 Preemption
points
Kernel 2.6
Real-Time
Kernel
2.6

B Preemptible B Non-Preemptible

©2006 MontaVista Software Platform to Innovate 5

Linux Real-Time Technology Overview | tavista:

" Linux 2.6 Kernel Real-Time Technology Enhancements
¢ Preemptible Interrupt Handlers in Thread Context

¢ Integrated Kernel Mutex with Priority Inheritance (PI)
* Preemptible Pl Mutex protects Kernel Critical Sections

¢ Pl Mutex Substituted for Non-Preemptible Kernel (SMP) Locks

* Big Kernel Lock (BKL) converted to Pl Mutex

* Spin-Locks converted to Pl Mutex

* Read-Write Locks converted to Pl Mutex

* RCU Preemption Enhancements to support conversion to Pl Mutex
¢ Integrated High Resolution Timers (KTimers)
¢ (Integrated User-Space Mutex)

* Robustness / Dead-Owner

* Priority Inheritance

©2006 MontaVista Software Platform to Innovate

montavista

Preemptible Interrupt Handlers in
Thread Context

Standard Linux Interrupt Handler montavista:

Scheduler: ALL tasklets first
Original kernel process continues Scheduler:

No tasklets left, schedule

Kernel starts interrupt handler .
prioritized processes

|
Running process }
Interrupt occur Int. handler schedules
“Tasklet” (bottom halve)
hardware !

interrupt “unbounded bottom half processing”

©2006 MontaVista Software Platform to Innovate

Thread-Context Interrupt Handlers montavista:

" Legacy Linux IRQ Subsystem Shortcomings

¢ |RQ subsystem has unbounded latencies
¢ SoftIRQ subsystem activated after IRQ handler

* SOoftIRQs can re-activate themselves holding off task execution
* SOftIRQ daemon already defers SoftIRQ activity to task space

* No Priorities for Interrupts

= Solution: Interrupts in Thread Context
¢ Demote top- and bottom-halves to Priority Task-space
¢ Real-Time tasks at Higher Priority than IRQ handlers
¢ Inter-leaving of RT and IRQ tasks

¢ VVacated IRQ execution-space for RT IRQ functions

* RT IRQs do not contend with common IRQs, achieve minimal
Response-time & Latency-variation

©2006 MontaVista Software Platform to Innovate

New: Thread Context Interrupt Handlers (2) montavistar

Schedule
IRQ handler: “wake_proceAss()”/ next process
SN
: 1 I I
i |

<

_ / A
Y

Highest prio
process runs
to completion

End of handler

hardware “Sleep thread”

interrupt

System designers now have the choice!

©2006 MontaVista Software Platform to Innovate

Thread-Context Interrupt Handlers montavista:

" Threaded IRQs Pros
@2 |RQ Processing does not interfere with Task Scheduling
2 Priority Assignment Flexibility

* Developer can create Real-Time tasks at Higher Priority than IRQ
handlers

2 RT IRQs do not contend with common IRQs
* RT IRQs see minimal Response-time & Latency-variation

@ Fully Preemptible

" Threaded IRQs Cons
% |RQ-Thread Overhead

+ Scheduler must run to activate IRQ Threads

x |RQ Thread Latency

* IRQs no longer running at the highest priority
* Full task switch required to handle IRQ
* Response-Time / Throughput tradeoff

©2006 MontaVista Software Platform to Innovate

montavista

Pl Mutex in kernel space

Kernel Locking and Preemption montavistar

" Spinlock protected code is non-preemptible
¢ Linux 2.6 Kernel has 11,000 critical sections
¢ Exhaustive testing of Kernel to identify worst-case
¢ [abor-intensive cleanup of critical sections
* \Worst-case after cleanup still not acceptable
* No control over 3" party drivers
¢ Maintenance

©2006 MontaVista Software Platform to Innovate 13

Priority-Inheriting Kernel Mutex montavistar

New Kernel (+Userspace) Synchronization Primitive
¢ Fundamental RT Technology

* Preemptible alternative to spin-locked / non-preemptible regions
* Expands on “Preemptible Kernel” Concept
* 3Spinlock typing preserved (maps spin_lock to RT or non-RT function)

¢ Enabler for User-space Real-Time Condition Variables & Mutexes

¢ Priority Inheritance
* Eliminate Priority Inversion Delays

¢ Priority-ordered O(1) Wait Queues
* Constant-time Waiter-list Processing

=

* Minimize Task Wake-Up Latencies
¢ Deadlock Detect

* |dentify Lock-Ordering Errors
* Reveal Locking Cycles

©2006 MontaVista Software Platform to Innovate 14

Real-Time Response vs. Throughput montavista:

Efficiency and Responsiveness are Inversely Related

¢ Overhead for Real-Time Preemption
Mutex Operations more complex than Spinlock Operations
Priority Inheritance on Mutex increases Task Switching
Priority Inheritance increases Worst-Case Execution Time

" Design flexibility allows much better worst case scenarios

¢ Real-time tasks are designed to use kernel resources in managed ways
then delays can be eliminated or reduced

©2006 MontaVista Software Platform to Innovate

What does that mean? montavista:

Process preemption

Threaded IRQ
Pl Mutex

Voluntary) preemption(

v
Time Histogram

©2006 MontaVista Software Platform to Innovate

/"'_-"'\
montavista-

Real-time Linux 2.6 Performance montavista-

= Real-Time Linux 2.6 Kernel Performance

¢ Far exceeds most stringent Audio performance requirements
¢ Enables sub-millisecond control-loop response
¢ Enables Hard Real Time for RT-aware Applications

©2006 MontaVista Software Platform to Innovate 18

| StdDev

Min

Max

Aver

sys load

e e et B b e S e
Kernel

Linux 2.6 IRQ Latency — Hard RT IRQ Handling montavista:
Linux-2.6.12-rc6-RT vs. Adeos / I-Pipe

o

o

- a

Q c G

6]

+ o +
0 o 0]
g s Q9 -
O+ & B E
Z o=

O

0

G

_

o\

—

O

o\

_

©

—

—

-

o

©

>

&4444._
D A e e TR e TR |
o
c

- T

0, < G

$)

+ o +
0 o 0)
aa -9 -
O+ E g E
Z oA o

LO

o~

_

0]

<

7

(@)

i

T

ad

<

iB)

-

=

o
a T
A o g
Q, O
S+
O o+ O
c s Q9
O+ E E E
Z o~ A
<
O
_
0]
Q,
-
0,
H
<
iB)
-
=

19

Platform to Innovate

©2006 MontaVista Software

Benchmarks

" Target machine:
¢ |Intel® Celeron® 800 MHz

" Workload applied to the target system:

Lmbench

Netperf

Hackbench

Dbench

Video Playback via MPlayer

" CPU utilization during test:

¢ 100% most of the time

" Test Duration:
¢ 20 hours

® & 6 o o

montavista

©2006 MontaVista Software Platform to Innovate

20

FRD montavista
Fast Real-time Domain
Measurement tool
Thread 1 runs Thread 2 runs
o | |
| | , T
|RQ handler
chpdules Thread 1 atc
- Bchedules
Thread 1 Thread 2
At At

©2006 MontaVista Software

Platform to Innovate

| | | |
Linux 2.6 Kernel — No Preemption montavista:
Momtabista Linux 4,0 (Celeron BOOMHZ)
PREEMPTION- MOME
1e+iG
Tazk 0 ——
Tazk 1

T e o e e e e e e e e Task 2 J

T A A e sl e s e e e s R e et
i |
;_% A e e e e L e e s]
= ;
o T I e e
=
=

| A A 44 T e e B R o R o E R D R SR P e e s el
1 : III | H ‘H ‘H H” HHH |
baTald] 1000 1500 20010 2500
Preemption Time [us)
Source:
©2006 MontaVista Software Platform to Innovate 22

| | | |
Linux 2.6 Kernel — Preemption montavista:
Momtabista Linux 4,0 (Celeron BOOMHZ)
FREEMPTION- DESETOP
1e+iG
Tazk 0 ——
= Tazk 1

100000 B - oo e Task o]

T 1 e i e e S s e)
i
;_% T e e e e e et e st et e s et e e e s s el e
5 |
L 100 B L - et
=
E "

T B e e S e e e B e e B el o e
1 H‘H e s L e
baTald] 1000 1500 20010 2500
Preemption Time [us)
Source:
©2006 MontaVista Software Platform to Innovate 23

Linux 2.6 Kernel — Preemption (scaled)

le+0G

100000

10000 F-

Mumber of Samples

Source:

Momtabista Linux 4,0 (Celeron BOOMHZ)
PREEMPTION- DESKTOP

1000

100 H| .|

10 H- |

...

l\

i

Preemption Time [us)

montavista

©2006 MontaVista Software

Platform to Innovate

24

Linux 2.6 Kernel - RT Preemption montavista

Momtabista Linux 4,0 (Celeron BO0MHZ)
PREEMPTION- BT

le+0G

Tazk 0 ——
: : ; ; : - Task 1 -
100000 b 4 e e e fie b s e e ST A
B e e L
I
[
E T e B e e e e e e s S e e e e s e e S
oy
(]
o T L R i e e et et s
i |
=
= .
il B e R e e e e e e i
e i e e e | G e el
0 100 200 200 400 500 =N 700

Preemption Time [us)

Source:

©2006 MontaVista Software Platform to Innovate 25

Linux 2.6 Kernel - RT Preemption (scaled) montawvista

Momtabista Linux 4,0 (Celeron BO0MHZ)
PREEMPTION- BT

le+0G

100000 : SRR G e T d
TRETRTETIS St e :='. bR \‘-,:
qoo0 k. L. Loooh Lo e b S

100 b foondbeo g I e AR e

Mumber of Samples

] S P St e e B e e

7 L o b H ‘

0 50 100 150 200 250

Preemption Time [us)

Source:

©2006 MontaVista Software Platform to Innovate 26

montavista

Userspace mutex

Requirements on user space mutex montavista:

A cool new user space mutex should have:
" Priority inheritance (PI)
¢ Protect user space against priority inversion
¢ Preferably same mechanism as in kernel
" Robustness
¢ |f a mutex is held by a process that died, the mutex will be released again
" Priority Queuing (PQ)
¢ |f multiple threads are waiting, wake up the highest priority thread
¢ Instead of “the first one” or “the first we come across”

= Deadlock Detect

=

Both Pl and PQ require the current mutex owner to be known.
* Thus process lists need to be maintained

©2006 MontaVista Software Platform to Innovate

Real Time Mutex montavista:

The new RT kernel mutex already features:
" Priority Inheritance

" Priority Queuing

" Deadlock Detect

Missing is:
= Robustness

¢ Since Robustness is only needed in userspace it would make
sense in a kernel mutex.

©2006 MontaVista Software Platform to Innovate 29

Existing code - fusyn montavistar

" “Dead” project
" Unfortunately, used by most carrier grade linuxes
" No link with kernel mutex

©2006 MontaVista Software Platform to Innovate

Existing Interface — Futex montavista:

" Simple Mutex with no RT functionality
" Complete userspace interface
" Already leveraged by glibc

= Robustness add on from Todd Kneisel

* The robustness add on also gave Futex a mutex owner concept
which is needed for Pl and PQ

©2006 MontaVista Software Platform to Innovate 31

/"'_-"'\
montavista-

Linux Real-Time Technology Status montavista

" Recent Real-Time Development

¢ |IRQ-Disable Virtualization (Walker) (partial, but including all
drivers)

Enhanced APIC Support
Robust User-Space Pl Mutexes (Kneisel / Singleton)

L 4

L 4

* High Resolution Timers Integrated (Ktimers: Gleixner)

¢ Arm Generic IRQ Subsystem Integration (King / Gleixner)
L 4

Mainstream Arm RT Extensions (Thomas Gleixner)

" Future Innovation

¢ RT “awareness” extensions to Power-management subsystem
* Quick CPU Power+Freq Ramp-UP when RT Task Scheduled

©2006 MontaVista Software Platform to Innovate 33

Real-Time Linux 2.6 Acceptance montavista:

" Community Status

¢ RT Kernel Stable Development in Community
* Steady stream of RT Patches into “—mm” and “-rc” Kernels
* Including KTimers and new mutex implementation

¢ Generic Implementation Facilitates Portability, Stability
* Intel, AMD 32-bit and 64-bit
= Arm
* PPC

" Real-Time Linux 2.6 Technology Confidence

¢ RT Preemption can ldentify Hard-to-find SMP Bugs
* Concurrency bugs easier to trace on UP Systems
* Sanctioned by Kernel Summit as Constructive R & D
* Voluntary Preemption Merged into 2.6.13
¢ Growing Community awareness of Performance Issues

¢ Audiophile Linux Distributions Shipping RT Kernel

©2006 MontaVista Software Platform to Innovate 34

montavista

Real world usage

montavista

Questions?

©2006 MontaVista Software Platform to Innovate

montavista

montavista

Platform to Innovate

©2006 MontaVista Software

montavista

Backup slides

New Kernel Preemption Modes montavista:

" No forced preemption (server mode)
¢ Traditional Linux non-preemptible kernel for best throughput
* No Guarantees and long delays can occur for High Priority Tasks

" Voluntary Kernel preemption (Desktop)
* Add explicit Preemption check-points to reduce locking time
¢ Reduces maximum preemption latency, slightly lower throughput
" Preemptible Kernel (Low latency Desktop)
¢ Kernel preemptible unless task is executing in SMP Critical Section
¢ Best-available preemption performance in Community 2.6 kernel
" Complete Preemption (Real Time)
¢ Kernel preemptible in SMP Critical Sections

¢ Interrupt threads and IRQ priorities
* Preemption Performance comparable to Sub-Kernel Performance.

©2006 MontaVista Software Platform to Innovate 40

(What is Priority Inversion?) montavista

' Priority Inversion in FIFO Scheduling
1. Process B is running and locks critical section CS,

2. Process B is preempted with critical section CS, locked

3. Process A is scheduled and attempts to lock critical section CS,

. Process A checks lock status and finds it locked by B

i. Process A blocks and releases the CPU
4. Process X is scheduled and becomes CPU-bound (does not block)
5. Process B is does not get Scheduled and is starved by Process X
6. Process A is blocked by process B holding critical section CS,

The priority of process A > priority of X, but A does not run
because X is CPU bound and higher priority than B

_____ 1 And on and on and on and on...

Oops...
locked

©2006 MontaVista Software Platform to Innovate

(What is Priority Inheritance?) montavista

' Priority Inversion and Priority Inheritance in FIFO Scheduling
1. Process B is running and locks critical section CS,
2. Process B is preempted with critical section CS, locked
3. Process A is scheduled and attempts to lock critical section CS,
o Process A checks lock status and finds it locked by B
». Process A finds priority of B < priority of A

. Process A saves priority of B and increases it to the priority of A
o Process A blocks and releases the CPU

4. Process B is scheduled and completes its operation in critical section CS,

. Process B checks lock status and finds it has inherited priority from A

i. Process B unlocks critical section CS, and resets its priority to the saved
priority

5. Process B is preempted and Proce ins access to critical section CS,

lock

Oops... unlock lock
locked 4a T TT

©2006 MontaVista Software Platform to Innovate

