
Presentation first given at: FOSDEM 2006
Embedded Development Room

See www.fosdem.org

Klaas van Gend
Field Application Engineer for Europe

Real Time Linux patches:
history and usage

http://www.fosdem.org/

©2006 MontaVista Software 2Platform to Innovate

Why Linux in Real-Time Systems?

Not because of the Kernel’s Real-Time Performance!
 UNIX-legacy Operating Systems were designed based

operating principles focused on throughput and progress
 Fairness, progress and resource-sharing conflict with the

requirements of time-critical applications
 UNIX systems (and Linux) are historically not Real-Time OS

In 2005, Linux RT Technology advanced dramatically
 Real-Time Linux can now be used a RTOS Kernel

©2006 MontaVista Software 3Platform to Innovate

Real-Time and Linux Kernel Evolution

 Gradual Kernel Optimizations over Time
 SMP Critical sections (Linux 2.x)
 Low-Latency Patches (Linux 2.2: Ingo Molnar/ Audio Community)
 Preemption Points / Kernel Tuning (Linux 2.2 / 2.4)
 Preemptible Kernel Patches (Linux 2.4) (Robert Love)
 Fixed-time “O(1)” Scheduler (MontaVista -> Ingo Molnar)
 Voluntary Preemption (Ingo Molnar)
 Real–Time Preemption (MontaVista Ingo Molnar)

©2006 MontaVista Software 4Platform to Innovate

Real-Time and Linux Kernel Evolution

 Gradual SMP-Oriented Linux Kernel Optimizations

Kernel Critical sections Preemptible
IRQ Subsystem Prioritized and Preemptible
Mutex Locks with Priority Inheritance

“RT-Preempt” Kernel

Kernel Preemption outside Critical Sections,
Preemptible “BKL”, O(1) Scheduler

Current Kernel 2.6

Kernel Preemption outside Critical Sections
Spin-locked Critical Sections

“Preempt” Kernel 2.4

No preemption, Spin-locked Critical SectionsSMP Kernel 2.2 - 2.4

No Kernel preemption, “BKL” SMP LockSMP Kernel 2.x

No Kernel preemptionEarly Kernel 1.x

©2006 MontaVista Software 5Platform to Innovate

Kernels
2.2-2.4

Kernel 2.6

Kernel Evolution: Preemptible Code

Preemptible Non-Preemptible

Kernel 2.0

Real-Time
Kernel

2.6

BKL

Preemption
points

©2006 MontaVista Software 6Platform to Innovate

Linux Real-Time Technology Overview

 Linux 2.6 Kernel Real-Time Technology Enhancements
 Preemptible Interrupt Handlers in Thread Context
 Integrated Kernel Mutex with Priority Inheritance (PI)

 Preemptible PI Mutex protects Kernel Critical Sections

 PI Mutex Substituted for Non-Preemptible Kernel (SMP) Locks
 Big Kernel Lock (BKL) converted to PI Mutex
 Spin-Locks converted to PI Mutex
 Read-Write Locks converted to PI Mutex
 RCU Preemption Enhancements to support conversion to PI Mutex

 Integrated High Resolution Timers (KTimers)
 (Integrated User-Space Mutex)

 Robustness / Dead-Owner
 Priority Inheritance

Preemptible Interrupt Handlers in
Thread Context

©2006 MontaVista Software Platform to Innovate

Standard Linux Interrupt Handler

High prio task

Scheduler:
No tasklets left, schedule
prioritized processes

Interrupt occurs

hardware
interrupt

Int. handler schedules
“Tasklet” (bottom halve)

Tasklet 1

Original kernel process continues

“unbounded bottom half processing”

Running process

Kernel starts interrupt handler

Scheduler: ALL tasklets first

…2 …3

©2006 MontaVista Software Platform to Innovate

Thread-Context Interrupt Handlers

 Legacy Linux IRQ Subsystem Shortcomings

 IRQ subsystem has unbounded latencies
 SoftIRQ subsystem activated after IRQ handler

 SoftIRQs can re-activate themselves holding off task execution
 SoftIRQ daemon already defers SoftIRQ activity to task space

 No Priorities for Interrupts

 Solution: Interrupts in Thread Context
 Demote top- and bottom-halves to Priority Task-space
 Real-Time tasks at Higher Priority than IRQ handlers
 Inter-leaving of RT and IRQ tasks
 Vacated IRQ execution-space for RT IRQ functions

 RT IRQs do not contend with common IRQs, achieve minimal
Response-time & Latency-variation

©2006 MontaVista Software Platform to Innovate

High priority process

Running process

Interrupt thread (less prio)

Kernel (scheduler)

New: Thread Context Interrupt Handlers (2)

IRQ handler: “wake_process()”

System designers now have the choice!

Tasklet

hardware
interrupt

End of handler
=

“Sleep thread”

Schedule
next process

Highest prio
process runs
to completion

©2006 MontaVista Software Platform to Innovate

Thread-Context Interrupt Handlers

 Threaded IRQs Pros
IRQ Processing does not interfere with Task Scheduling
Priority Assignment Flexibility
 Developer can create Real-Time tasks at Higher Priority than IRQ

handlers
RT IRQs do not contend with common IRQs
 RT IRQs see minimal Response-time & Latency-variation

Fully Preemptible

 Threaded IRQs Cons
IRQ-Thread Overhead
 Scheduler must run to activate IRQ Threads

IRQ Thread Latency
 IRQs no longer running at the highest priority
 Full task switch required to handle IRQ
 Response-Time / Throughput tradeoff

PI Mutex in kernel space

©2006 MontaVista Software 13Platform to Innovate

 Spinlock protected code is non-preemptible
 Linux 2.6 Kernel has 11,000 critical sections
 Exhaustive testing of Kernel to identify worst-case
 Labor-intensive cleanup of critical sections
 Worst-case after cleanup still not acceptable
 No control over 3rd party drivers
 Maintenance

Kernel Locking and Preemption

©2006 MontaVista Software 14Platform to Innovate

Priority-Inheriting Kernel Mutex

New Kernel (+Userspace) Synchronization Primitive
 Fundamental RT Technology

 Preemptible alternative to spin-locked / non-preemptible regions
 Expands on “Preemptible Kernel” Concept
 Spinlock typing preserved (maps spin_lock to RT or non-RT function)

 Enabler for User-space Real-Time Condition Variables & Mutexes
 Priority Inheritance

 Eliminate Priority Inversion Delays
 Priority-ordered O(1) Wait Queues

 Constant-time Waiter-list Processing
 Minimize Task Wake-Up Latencies

 Deadlock Detect
 Identify Lock-Ordering Errors
 Reveal Locking Cycles

π

©2006 MontaVista Software Platform to Innovate

Real-Time Response vs. Throughput

Efficiency and Responsiveness are Inversely Related

 Overhead for Real-Time Preemption
 Mutex Operations more complex than Spinlock Operations
 Priority Inheritance on Mutex increases Task Switching
 Priority Inheritance increases Worst-Case Execution Time

 Design flexibility allows much better worst case scenarios
 Real-time tasks are designed to use kernel resources in managed ways

then delays can be eliminated or reduced

Throughput High responsiveness

©2006 MontaVista Software Platform to Innovate

What does that mean?

Time Histogram

Process preemption

Voluntary) preemption(

PI Mutex

Threaded IRQ

Performance

©2006 MontaVista Software 18Platform to Innovate

Real-time Linux 2.6 Performance

 Real-Time Linux 2.6 Kernel Performance
 Far exceeds most stringent Audio performance requirements
 Enables sub-millisecond control-loop response
 Enables Hard Real Time for RT-aware Applications

©2006 MontaVista Software 19Platform to Innovate

Linux-2.6.12-rc6-RT vs. Adeos / I-Pipe

+--------------------+------------+------+-------+------+--------+
| Kernel | sys load | Aver | Max | Min | StdDev |
+====================+============+======+=======+======+========+
	None	13.9	55.5	13.4	0.4
	Ping	14.0	57.9	13.3	0.4
Vanilla-2.6.12-rc6	lm. + ping	14.3	171.6	13.4	1.0
	lmbench	14.2	150.2	13.4	1.0
	lm. + hd	14.7	191.7	13.3	4.0
+--------------------+------------+------+-------+------+--------+					
	None	13.9	53.1	13.4	0.4
	Ping	14.4	56.2	13.4	0.9
with RT-V0.7.48-25	lm. + ping	14.7	56.9	13.4	1.1
	lmbench	14.3	57.0	13.4	0.7
	lm. + hd	14.3	58.9	13.4	0.8
+--------------------+------------+------+-------+------+--------+					
	None	13.9	53.3	13.5	0.8
	Ping	14.2	57.2	13.6	0.9
with Ipipe-0.4	lm.+ ping	14.5	56.5	13.5	0.9
	lmbench	14.3	55.6	13.4	0.9
	lm. + hd	14.4	55.5	13.4	0.9
+--------------------+------------+------+-------+------+--------+

Linux 2.6 IRQ Latency – Hard RT IRQ Handling

©2006 MontaVista Software 20Platform to Innovate

Benchmarks

 Target machine:
 Intel® Celeron® 800 MHz

 Workload applied to the target system:
 Lmbench
 Netperf
 Hackbench
 Dbench
 Video Playback via MPlayer

 CPU utilization during test:
 100% most of the time

 Test Duration:
 20 hours

©2006 MontaVista Software Platform to Innovate

FRD

IRQ handler
Schedules
Thread 1

Thread 1 runs

Thread 1
Schedules
Thread 2

Thread 2 runs

etc

∆t ∆t

Fast Real-time Domain
Measurement tool

©2006 MontaVista Software 22Platform to Innovate

Linux 2.6 Kernel – No Preemption

Line Chart Title

Source:

©2006 MontaVista Software 23Platform to Innovate

Linux 2.6 Kernel – Preemption

Line Chart Title

Source:

©2006 MontaVista Software 24Platform to Innovate

Linux 2.6 Kernel – Preemption (scaled)

Line Chart Title

Source:

©2006 MontaVista Software 25Platform to Innovate

Linux 2.6 Kernel - RT Preemption

Line Chart Title

Source:

©2006 MontaVista Software 26Platform to Innovate

Linux 2.6 Kernel - RT Preemption (scaled)

Line Chart Title

Source:

Userspace mutex

©2006 MontaVista Software Platform to Innovate

Requirements on user space mutex

A cool new user space mutex should have:
 Priority inheritance (PI)

 Protect user space against priority inversion
 Preferably same mechanism as in kernel

 Robustness
 If a mutex is held by a process that died, the mutex will be released again

 Priority Queuing (PQ)
 If multiple threads are waiting, wake up the highest priority thread
 Instead of “the first one” or “the first we come across”

 Deadlock Detect

Both PI and PQ require the current mutex owner to be known.
 Thus process lists need to be maintained

π

©2006 MontaVista Software 29Platform to Innovate

The new RT kernel mutex already features:
 Priority Inheritance
 Priority Queuing
 Deadlock Detect

Missing is:
 Robustness

 Since Robustness is only needed in userspace it would make
sense in a kernel mutex.

Real Time Mutex

©2006 MontaVista Software Platform to Innovate

Existing code - fusyn

 “Dead” project
 Unfortunately, used by most carrier grade linuxes
 No link with kernel mutex

©2006 MontaVista Software 31Platform to Innovate

 Simple Mutex with no RT functionality
 Complete userspace interface
 Already leveraged by glibc
 Robustness add on from Todd Kneisel

 The robustness add on also gave Futex a mutex owner concept
which is needed for PI and PQ

Existing Interface – Futex

Status

©2006 MontaVista Software 33Platform to Innovate

Linux Real-Time Technology Status

 Recent Real-Time Development
 IRQ-Disable Virtualization (Walker) (partial, but including all

drivers)
 Enhanced APIC Support
 Robust User-Space PI Mutexes (Kneisel / Singleton)
 High Resolution Timers Integrated (Ktimers: Gleixner)
 Arm Generic IRQ Subsystem Integration (King / Gleixner)
 Mainstream Arm RT Extensions (Thomas Gleixner)

 Future Innovation
 RT “awareness” extensions to Power-management subsystem
 Quick CPU Power+Freq Ramp-UP when RT Task Scheduled

©2006 MontaVista Software 34Platform to Innovate

Real-Time Linux 2.6 Acceptance
 Community Status

 RT Kernel Stable Development in Community
 Steady stream of RT Patches into “–mm” and “-rc” Kernels
 Including KTimers and new mutex implementation

 Generic Implementation Facilitates Portability, Stability
 Intel, AMD 32-bit and 64-bit
 Arm
 PPC

 Real-Time Linux 2.6 Technology Confidence
 RT Preemption can Identify Hard-to-find SMP Bugs

 Concurrency bugs easier to trace on UP Systems
 Sanctioned by Kernel Summit as Constructive R & D
 Voluntary Preemption Merged into 2.6.13

 Growing Community awareness of Performance Issues
 Audiophile Linux Distributions Shipping RT Kernel

Real world usage

©2006 MontaVista Software Platform to Innovate

Questions?

©2006 MontaVista Software Platform to Innovate

Platform to Innovate

©2006 MontaVista Software Platform to Innovate

Backup slides

©2006 MontaVista Software 40Platform to Innovate

New Kernel Preemption Modes

 No forced preemption (server mode)
 Traditional Linux non-preemptible kernel for best throughput
 No Guarantees and long delays can occur for High Priority Tasks

 Voluntary Kernel preemption (Desktop)
 Add explicit Preemption check-points to reduce locking time
 Reduces maximum preemption latency, slightly lower throughput

 Preemptible Kernel (Low latency Desktop)
 Kernel preemptible unless task is executing in SMP Critical Section
 Best-available preemption performance in Community 2.6 kernel

 Complete Preemption (Real Time)
 Kernel preemptible in SMP Critical Sections
 Interrupt threads and IRQ priorities
 Preemption Performance comparable to Sub-Kernel Performance.

©2006 MontaVista Software Platform to Innovate

(What is Priority Inversion?)
 Priority Inversion in FIFO Scheduling

1. Process B is running and locks critical section CS1

2. Process B is preempted with critical section CS1 locked

3. Process A is scheduled and attempts to lock critical section CS1

i. Process A checks lock status and finds it locked by B

ii. Process A blocks and releases the CPU

4. Process X is scheduled and becomes CPU-bound (does not block)

5. Process B is does not get Scheduled and is starved by Process X

6. Process A is blocked by process B holding critical section CS1

The priority of process A > priority of X, but A does not run
because X is CPU bound and higher priority than B

A
X
B

lock

X
And on and on and on and on…

Oops…
locked

1 2

3

4

5

6

CS

p
ri

o
ri

ty

©2006 MontaVista Software Platform to Innovate

(What is Priority Inheritance?)

A
X
B

lock

X

Oops…
locked

1 2

3a

4a

5

6
3c

unlock

X
4b

lock

p
ri

o
ri

ty

CS

 Priority Inversion and Priority Inheritance in FIFO Scheduling
1. Process B is running and locks critical section CS1

2. Process B is preempted with critical section CS1 locked

3. Process A is scheduled and attempts to lock critical section CS1

a. Process A checks lock status and finds it locked by B

b. Process A finds priority of B < priority of A

c. Process A saves priority of B and increases it to the priority of A

d. Process A blocks and releases the CPU

4. Process B is scheduled and completes its operation in critical section CS1

i. Process B checks lock status and finds it has inherited priority from A

ii. Process B unlocks critical section CS1 and resets its priority to the saved
priority

5. Process B is preempted and Process A gains access to critical section CS1

6. Process X is scheduled after Process A releases the CPU

π π

