
Presentation first given at: FOSDEM 2006
Embedded Development Room

See www.fosdem.org

Klaas van Gend
Field Application Engineer for Europe

Real Time Linux patches:
history and usage

http://www.fosdem.org/

©2006 MontaVista Software 2Platform to Innovate

Why Linux in Real-Time Systems?

Not because of the Kernel’s Real-Time Performance!
 UNIX-legacy Operating Systems were designed based

operating principles focused on throughput and progress
 Fairness, progress and resource-sharing conflict with the

requirements of time-critical applications
 UNIX systems (and Linux) are historically not Real-Time OS

In 2005, Linux RT Technology advanced dramatically
 Real-Time Linux can now be used a RTOS Kernel

©2006 MontaVista Software 3Platform to Innovate

Real-Time and Linux Kernel Evolution

 Gradual Kernel Optimizations over Time
 SMP Critical sections (Linux 2.x)
 Low-Latency Patches (Linux 2.2: Ingo Molnar/ Audio Community)
 Preemption Points / Kernel Tuning (Linux 2.2 / 2.4)
 Preemptible Kernel Patches (Linux 2.4) (Robert Love)
 Fixed-time “O(1)” Scheduler (MontaVista -> Ingo Molnar)
 Voluntary Preemption (Ingo Molnar)
 Real–Time Preemption (MontaVista  Ingo Molnar)

©2006 MontaVista Software 4Platform to Innovate

Real-Time and Linux Kernel Evolution

 Gradual SMP-Oriented Linux Kernel Optimizations

Kernel Critical sections Preemptible
IRQ Subsystem Prioritized and Preemptible
Mutex Locks with Priority Inheritance

“RT-Preempt” Kernel

Kernel Preemption outside Critical Sections,
Preemptible “BKL”, O(1) Scheduler

Current Kernel 2.6

Kernel Preemption outside Critical Sections
Spin-locked Critical Sections

“Preempt” Kernel 2.4

No preemption, Spin-locked Critical SectionsSMP Kernel 2.2 - 2.4

No Kernel preemption, “BKL” SMP LockSMP Kernel 2.x

No Kernel preemptionEarly Kernel 1.x

©2006 MontaVista Software 5Platform to Innovate

Kernels
2.2-2.4

Kernel 2.6

Kernel Evolution: Preemptible Code

Preemptible Non-Preemptible

Kernel 2.0

Real-Time
Kernel

2.6

BKL

Preemption
points

©2006 MontaVista Software 6Platform to Innovate

Linux Real-Time Technology Overview

 Linux 2.6 Kernel Real-Time Technology Enhancements
 Preemptible Interrupt Handlers in Thread Context
 Integrated Kernel Mutex with Priority Inheritance (PI)

 Preemptible PI Mutex protects Kernel Critical Sections

 PI Mutex Substituted for Non-Preemptible Kernel (SMP) Locks
 Big Kernel Lock (BKL) converted to PI Mutex
 Spin-Locks converted to PI Mutex
 Read-Write Locks converted to PI Mutex
 RCU Preemption Enhancements to support conversion to PI Mutex

 Integrated High Resolution Timers (KTimers)
 (Integrated User-Space Mutex)

 Robustness / Dead-Owner
 Priority Inheritance

Preemptible Interrupt Handlers in
Thread Context

©2006 MontaVista Software Platform to Innovate

Standard Linux Interrupt Handler

High prio task

Scheduler:
No tasklets left, schedule
prioritized processes

Interrupt occurs

hardware
interrupt

Int. handler schedules
“Tasklet” (bottom halve)

Tasklet 1

Original kernel process continues

“unbounded bottom half processing”

Running process

Kernel starts interrupt handler

Scheduler: ALL tasklets first

…2 …3

©2006 MontaVista Software Platform to Innovate

Thread-Context Interrupt Handlers

 Legacy Linux IRQ Subsystem Shortcomings

 IRQ subsystem has unbounded latencies
 SoftIRQ subsystem activated after IRQ handler

 SoftIRQs can re-activate themselves holding off task execution
 SoftIRQ daemon already defers SoftIRQ activity to task space

 No Priorities for Interrupts

 Solution: Interrupts in Thread Context
 Demote top- and bottom-halves to Priority Task-space
 Real-Time tasks at Higher Priority than IRQ handlers
 Inter-leaving of RT and IRQ tasks
 Vacated IRQ execution-space for RT IRQ functions

 RT IRQs do not contend with common IRQs, achieve minimal
Response-time & Latency-variation

©2006 MontaVista Software Platform to Innovate

High priority process

Running process

Interrupt thread (less prio)

Kernel (scheduler)

New: Thread Context Interrupt Handlers (2)

IRQ handler: “wake_process()”

System designers now have the choice!

Tasklet

hardware
interrupt

End of handler
=

“Sleep thread”

Schedule
next process

Highest prio
process runs
to completion

©2006 MontaVista Software Platform to Innovate

Thread-Context Interrupt Handlers

 Threaded IRQs Pros
IRQ Processing does not interfere with Task Scheduling
Priority Assignment Flexibility
 Developer can create Real-Time tasks at Higher Priority than IRQ

handlers
RT IRQs do not contend with common IRQs
 RT IRQs see minimal Response-time & Latency-variation

Fully Preemptible

 Threaded IRQs Cons
IRQ-Thread Overhead
 Scheduler must run to activate IRQ Threads

IRQ Thread Latency
 IRQs no longer running at the highest priority
 Full task switch required to handle IRQ
 Response-Time / Throughput tradeoff

PI Mutex in kernel space

©2006 MontaVista Software 13Platform to Innovate

 Spinlock protected code is non-preemptible
 Linux 2.6 Kernel has 11,000 critical sections
 Exhaustive testing of Kernel to identify worst-case
 Labor-intensive cleanup of critical sections
 Worst-case after cleanup still not acceptable
 No control over 3rd party drivers
 Maintenance

Kernel Locking and Preemption

©2006 MontaVista Software 14Platform to Innovate

Priority-Inheriting Kernel Mutex

New Kernel (+Userspace) Synchronization Primitive
 Fundamental RT Technology

 Preemptible alternative to spin-locked / non-preemptible regions
 Expands on “Preemptible Kernel” Concept
 Spinlock typing preserved (maps spin_lock to RT or non-RT function)

 Enabler for User-space Real-Time Condition Variables & Mutexes
 Priority Inheritance

 Eliminate Priority Inversion Delays
 Priority-ordered O(1) Wait Queues

 Constant-time Waiter-list Processing
 Minimize Task Wake-Up Latencies

 Deadlock Detect
 Identify Lock-Ordering Errors
 Reveal Locking Cycles

π

©2006 MontaVista Software Platform to Innovate

Real-Time Response vs. Throughput

Efficiency and Responsiveness are Inversely Related

 Overhead for Real-Time Preemption
 Mutex Operations more complex than Spinlock Operations
 Priority Inheritance on Mutex increases Task Switching
 Priority Inheritance increases Worst-Case Execution Time

 Design flexibility allows much better worst case scenarios
 Real-time tasks are designed to use kernel resources in managed ways

then delays can be eliminated or reduced

Throughput High responsiveness

©2006 MontaVista Software Platform to Innovate

What does that mean?

Time Histogram

Process preemption

Voluntary) preemption(

PI Mutex

Threaded IRQ

Performance

©2006 MontaVista Software 18Platform to Innovate

Real-time Linux 2.6 Performance

 Real-Time Linux 2.6 Kernel Performance
 Far exceeds most stringent Audio performance requirements
 Enables sub-millisecond control-loop response
 Enables Hard Real Time for RT-aware Applications

©2006 MontaVista Software 19Platform to Innovate

Linux-2.6.12-rc6-RT vs. Adeos / I-Pipe

+--------------------+------------+------+-------+------+--------+
| Kernel | sys load | Aver | Max | Min | StdDev |
+====================+============+======+=======+======+========+
	None	13.9	55.5	13.4	0.4
	Ping	14.0	57.9	13.3	0.4
Vanilla-2.6.12-rc6	lm. + ping	14.3	171.6	13.4	1.0
	lmbench	14.2	150.2	13.4	1.0
	lm. + hd	14.7	191.7	13.3	4.0
+--------------------+------------+------+-------+------+--------+					
	None	13.9	53.1	13.4	0.4
	Ping	14.4	56.2	13.4	0.9
with RT-V0.7.48-25	lm. + ping	14.7	56.9	13.4	1.1
	lmbench	14.3	57.0	13.4	0.7
	lm. + hd	14.3	58.9	13.4	0.8
+--------------------+------------+------+-------+------+--------+					
	None	13.9	53.3	13.5	0.8
	Ping	14.2	57.2	13.6	0.9
with Ipipe-0.4	lm.+ ping	14.5	56.5	13.5	0.9
	lmbench	14.3	55.6	13.4	0.9
	lm. + hd	14.4	55.5	13.4	0.9
+--------------------+------------+------+-------+------+--------+

Linux 2.6 IRQ Latency – Hard RT IRQ Handling

©2006 MontaVista Software 20Platform to Innovate

Benchmarks

 Target machine:
 Intel® Celeron® 800 MHz

 Workload applied to the target system:
 Lmbench
 Netperf
 Hackbench
 Dbench
 Video Playback via MPlayer

 CPU utilization during test:
 100% most of the time

 Test Duration:
 20 hours

©2006 MontaVista Software Platform to Innovate

FRD

IRQ handler
Schedules
Thread 1

Thread 1 runs

Thread 1
Schedules
Thread 2

Thread 2 runs

etc

∆t ∆t

Fast Real-time Domain
Measurement tool

©2006 MontaVista Software 22Platform to Innovate

Linux 2.6 Kernel – No Preemption

Line Chart Title

Source:

©2006 MontaVista Software 23Platform to Innovate

Linux 2.6 Kernel – Preemption

Line Chart Title

Source:

©2006 MontaVista Software 24Platform to Innovate

Linux 2.6 Kernel – Preemption (scaled)

Line Chart Title

Source:

©2006 MontaVista Software 25Platform to Innovate

Linux 2.6 Kernel - RT Preemption

Line Chart Title

Source:

©2006 MontaVista Software 26Platform to Innovate

Linux 2.6 Kernel - RT Preemption (scaled)

Line Chart Title

Source:

Userspace mutex

©2006 MontaVista Software Platform to Innovate

Requirements on user space mutex

A cool new user space mutex should have:
 Priority inheritance (PI)

 Protect user space against priority inversion
 Preferably same mechanism as in kernel

 Robustness
 If a mutex is held by a process that died, the mutex will be released again

 Priority Queuing (PQ)
 If multiple threads are waiting, wake up the highest priority thread
 Instead of “the first one” or “the first we come across”

 Deadlock Detect

Both PI and PQ require the current mutex owner to be known.
 Thus process lists need to be maintained

π

©2006 MontaVista Software 29Platform to Innovate

The new RT kernel mutex already features:
 Priority Inheritance
 Priority Queuing
 Deadlock Detect

Missing is:
 Robustness

 Since Robustness is only needed in userspace it would make
sense in a kernel mutex.

Real Time Mutex

©2006 MontaVista Software Platform to Innovate

Existing code - fusyn

 “Dead” project
 Unfortunately, used by most carrier grade linuxes
 No link with kernel mutex

©2006 MontaVista Software 31Platform to Innovate

 Simple Mutex with no RT functionality
 Complete userspace interface
 Already leveraged by glibc
 Robustness add on from Todd Kneisel

 The robustness add on also gave Futex a mutex owner concept
which is needed for PI and PQ

Existing Interface – Futex

Status

©2006 MontaVista Software 33Platform to Innovate

Linux Real-Time Technology Status

 Recent Real-Time Development
 IRQ-Disable Virtualization (Walker) (partial, but including all

drivers)
 Enhanced APIC Support
 Robust User-Space PI Mutexes (Kneisel / Singleton)
 High Resolution Timers Integrated (Ktimers: Gleixner)
 Arm Generic IRQ Subsystem Integration (King / Gleixner)
 Mainstream Arm RT Extensions (Thomas Gleixner)

 Future Innovation
 RT “awareness” extensions to Power-management subsystem
 Quick CPU Power+Freq Ramp-UP when RT Task Scheduled

©2006 MontaVista Software 34Platform to Innovate

Real-Time Linux 2.6 Acceptance
 Community Status

 RT Kernel Stable Development in Community
 Steady stream of RT Patches into “–mm” and “-rc” Kernels
 Including KTimers and new mutex implementation

 Generic Implementation Facilitates Portability, Stability
 Intel, AMD 32-bit and 64-bit
 Arm
 PPC

 Real-Time Linux 2.6 Technology Confidence
 RT Preemption can Identify Hard-to-find SMP Bugs

 Concurrency bugs easier to trace on UP Systems
 Sanctioned by Kernel Summit as Constructive R & D
 Voluntary Preemption Merged into 2.6.13

 Growing Community awareness of Performance Issues
 Audiophile Linux Distributions Shipping RT Kernel

Real world usage

©2006 MontaVista Software Platform to Innovate

Questions?

©2006 MontaVista Software Platform to Innovate

Platform to Innovate

©2006 MontaVista Software Platform to Innovate

Backup slides

©2006 MontaVista Software 40Platform to Innovate

New Kernel Preemption Modes

 No forced preemption (server mode)
 Traditional Linux non-preemptible kernel for best throughput
 No Guarantees and long delays can occur for High Priority Tasks

 Voluntary Kernel preemption (Desktop)
 Add explicit Preemption check-points to reduce locking time
 Reduces maximum preemption latency, slightly lower throughput

 Preemptible Kernel (Low latency Desktop)
 Kernel preemptible unless task is executing in SMP Critical Section
 Best-available preemption performance in Community 2.6 kernel

 Complete Preemption (Real Time)
 Kernel preemptible in SMP Critical Sections
 Interrupt threads and IRQ priorities
 Preemption Performance comparable to Sub-Kernel Performance.

©2006 MontaVista Software Platform to Innovate

(What is Priority Inversion?)
 Priority Inversion in FIFO Scheduling

1. Process B is running and locks critical section CS1

2. Process B is preempted with critical section CS1 locked

3. Process A is scheduled and attempts to lock critical section CS1

i. Process A checks lock status and finds it locked by B

ii. Process A blocks and releases the CPU

4. Process X is scheduled and becomes CPU-bound (does not block)

5. Process B is does not get Scheduled and is starved by Process X

6. Process A is blocked by process B holding critical section CS1

The priority of process A > priority of X, but A does not run
because X is CPU bound and higher priority than B

A
X
B

lock

X
And on and on and on and on…

Oops…
locked

1 2

3

4

5

6

CS

p
ri

o
ri

ty

©2006 MontaVista Software Platform to Innovate

(What is Priority Inheritance?)

A
X
B

lock

X

Oops…
locked

1 2

3a

4a

5

6
3c

unlock

X
4b

lock

p
ri

o
ri

ty

CS

 Priority Inversion and Priority Inheritance in FIFO Scheduling
1. Process B is running and locks critical section CS1

2. Process B is preempted with critical section CS1 locked

3. Process A is scheduled and attempts to lock critical section CS1

a. Process A checks lock status and finds it locked by B

b. Process A finds priority of B < priority of A

c. Process A saves priority of B and increases it to the priority of A

d. Process A blocks and releases the CPU

4. Process B is scheduled and completes its operation in critical section CS1

i. Process B checks lock status and finds it has inherited priority from A

ii. Process B unlocks critical section CS1 and resets its priority to the saved
priority

5. Process B is preempted and Process A gains access to critical section CS1

6. Process X is scheduled after Process A releases the CPU

π π

